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J .  Phys. A: Math  Gen. 27 (1994) 2773-2785. Printed in the UK 

Unification based on S0*(14) Yang-Mills theory: the gauge 
field Lagrangian 

The0 Verwimpt 
Physics Department, UIA. Universiteit Antwerpen, B-2610 Wilrijk. Antwerpen, Belgium 

Received 24 June 1993, in final form 4 November 1993 

Abstract. Gravity can be described as a gauge field theory where connection and curvature 
areso(2, 3) valued. In the standard gauge field theory for strong and electroweak interaction. 
corresponding quantities take their value in the ,m(3)@ss(2)Qrr(l) algebra. Therefore, 
unification of gravity with the other fundamental interactions is obtained by using the 
non-compact simple real Lie algebra soY14)=so(Z, 3)0su(3)@srt(2)$"(I) as a unifying 
algebra. 

Commutation relations for ao*(14) are derived in a basis adapted to this subalgebra 
structure. The s0*(14) gauge field defined by a connection one-form on the SO'(14) princi- 
pal fibre bundle unifies the fundamental inleractions in particle physics, gravily included. 
The 91 components of the connection contain the 10 antide Sitter gauge fields, the 12 
gauge bosons associated with SU(3)@SU(2)QU(l). two SU(3) triplels of lepto-quark 
bosons, an anti-de Sitter five-vector which is also an SU(2) triplet and finally two SU(3) 
triplets of four-spinors which are also SU(2)  doublets. Although so'(14) is a Lie algebra 
and not a superalgebra. it is a general property of the theory that bosons and fermions can 
be incorporated in irreducible supermultiplets. 

The unified gauge field Lagrangian is defined by the Yang-Mills Weil form on the 
S0*(14) principal bundle. 

1. Introduction 

The simple real Lie algebra so*( 14) is non-compact [I], and thus the finite-dimensional 
irreducible representations are non-Hermitian. Nevertheless, it is physically interesting 
to consider this algebra in the context of a gauge theory describing the interactions 
between elementary particles. The reason was given in [ 2 ] .  Since s o * ( 1 4 ) ~  
4 2 ,  ~ ) @ s u ( ~ ) @ s u ( ~ ) @ u (  I ) ,  there is the possibility to combine the subalgebra 
su(3)@su(2)@u( 1) on which the standard theory of strong and electroweak interactions 
is based, u1ith the Lorentz algebra so( I ,  3 ) c s o ( 2 ,  3 ) .  

The Lie group S0*(14) is not a group of bosonic symmetries. The symmetry con- 
nects particles of integer spin with particles of half-odd-integer spin. In general, an irrep 
of so*(14) will contain both tensor and spinor representations of so(1, 3). Bosons and 
fermions are incorporated in irreducible supermultiplets, although so*( 14) is a Lie 
algebra and not a superalgebra. Therefore, a gauge theory based on S0*(14) escapes 
the 'no-go' theorem ofColeman and Mandula, who showed on verygeneral assumptions 
that any group of bosonic symmetries of the S-matrix in relativistic field theory is the 
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direct product of the Poiticark group with an internal symmetry group [3]. Moreover, 
in the model presented here, spacetime is never perfectly Minkowskian but anti-de 
Sitter, and the spacetime isometry group is the anti-de Sitter group SU(2 ,3 )  instead of 
the PoincarC: group. I t  is only in the limit in which the constant curvature of the anti- 
de Sitter space goes to zero that this space tends to Minkowski space and the isometry 
group SO(2.3) contracts to the Poincare group (e.g. see [4J). The fact that the SO*( 14) 
symmetry has the Poincari group as spacetime symmetry only as a limiting case also 
implies that the theorem of O'Raifeartaigh [5] does not apply, such that all members 
of an irreducible multiplet of the internal symmetry group are allowed to have different 
masses. I t  is for this reason that Tail and Cornwell [6] considered all unifications of 
the de Sitter algebras with a real simple internal symmetry algebra. However, non- 
trivial unifications of anti-de Sitter with the symmetries of the standard model are only 
possible if the condition for a simple internal symmetry is  relaxed to the case where it 
is neither simple nor semi-simple, as in the present model. 

By considering the spacetime symmetry as a local symmetry, gravitational inter- 
action i s  introduced. The fact that the anti-de Sitter group can be used, instead of the 
Poincar6 group as the local symmetry on which gravity is based, has been known for 
some time. The formulation of gravity as a de Sitter or anti-de Sitter gauge theory 
started with the papers of Townsend, MacDowell and Mansouri [7]. More recently, 
Zardecki used the notion of the connection of Cartan, to describe gravity in such gauge 
formalism, and formulated the BRST invariance of the theory [SI. Gotzes and I-lirshfeld 
used a Clifford algebra valued Cartan connection to give a geometrical formulation of 
anti-de Sitter gravity [9 ] .  

Essential in the formulation of these gauge theories for gravity is the notion of fibre 
bundle reduction and the related concept of symmetry breaking [ 10-121. If P ( M ,  G) is 
a principal fibre bundle with structure group G over spacetime M and I? a closed 
subgroup of G,  then the existence of a principal subbundle Q(M, H ) .  is equivalent to 
the existence of a section (a 'physical Higgs field') qr: M - PIN,  where P,'H i s  the 
associated bundle to P by the action of G on the coset space G/H. There exists a one- 
to-one correspondence between these sections and equivariant mappings 
4:  P + G / N c  Vof the type ( p ,  V )  where Vis the vector space on which G acts through 
a representation p : G +  GL(I') and G/I I  is the orbit space p ( C ) .  ou, with v ~ E G / N  an 
H-fixed point in V.  Fulp and Norris [12] refer to 4 as a 'symmetry breaking Higgs 
field'. In  fact Q=~- ' (LJu) .  Using this concept of symmetry breaking, the original Lag- 
rangian defined in the G-principal bundle P can be re-expressed in terms of quantities 
defined in the N-principal sub-bundle Q. In  [ 131 it was shown that within this geometric 
framework it is possible to describe gravity and the electroweak theory with one type 
of Lagrangian, a Yang-Mills Weil fomi on a principal fibre bundle over spacetime 
whereby the curvature two-form takes its values in the anti-de Sitter and su(2)$u(l) 
algebra, respectively. Having described gravity as a gauge theory with symmetry break- 
ing, geometrically seen completely similar to electroweak theory, unification of both 
interactions within a Yang-Mills gauge theory becomes meaningful. The unifying alge- 
bra is then s0*(10)3s0(2,3)0su(2)$~(1). I t  is more natural to also incorporate the 
strong interaction in this unification. A unifying algebra is then so*(l4). and we have 
to consider a symmetry breaking SO*( 14) -+SU(2,3)@SU(3)@SU(2)@U( I). 

If our unifying gauge group is to be a 'good' symmetry it should have a single gauge 
coupling at super-high energies so that all interactions are truly unified. I t  should 
therefore be a simple group. A natural choice is then SO*( 14) since it  is the smallest 
simple Lie group that contains the required subsymmetries. I t  is, however, possible to 
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consider other gauge groups as a unifying group. In fact, 

s0(2,3) @ s u ( ~ ) @ s u ( ~ ) @ u (  I )  c s0*(6) @so*(S) c so*( 14) c so*( 16) (1.1) 

and so*( 16) is a maximum subalgebra of a non-compact real form of Es. 
It is important to notice that undesirable consequences connected with the use of a 

non-compact real form as a gauge symmetry, such as negative probabilities and non- 
unitary S-matrix at the quantum level, can be eliminated. This was shown by Margolin 
and Strazhev [ 141, who performed Yang-Mills field quantization in BRST formalism 
for non-compact gauge groups. 

It is the purpose of this paper to describe a unified gauge field for electroweak, 
strong and gravitational interaction. Therefore. after defining the Lie algebra so*(2n) 
in section 2, we define in section 3 the basis operators for so*( 14) appropriate to the 
reduction scheme. Their commutation relations are given in section 4. In section 5. the 
so*( 14)-valued connection one-form is introduced and its curvature form calculated. 
In  section 6 the unifying gauge field Lagrangian is defined and elaborated. A discussion 
and interpretation of the theory presented can be found in section 7.  

2. The Lie algebra so*(Zn) 

The Lie algebra so*(2n) is a real form of D., the complex extension of so(2n). For 
n> 2. so*(2n) is simple and for t i >  I ,  these algebras are non-compact. 

Let E,, be the n x n matrix with all entries zero except on the intersection of the 
uth row and wth column where it has the entry I ,  and define 

A.,..= E",, -E,,., = KED,,. + E,,,") u.w=1,2  ,.... n (2.1) 
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3. Basis operators 

Since we consider a symmetry breaking G=SU*(14) --t H = S U ( 2 . 3 ) @ S U ( 3 ) @  
SU(2)@U( I )  and a corresponding fibre bundle reduction from P ( M ,  G)  to Q ( M ,  H ) ,  
we define here new basis operators for so*( 14) appropriate to such a reduction scheme. 
The Lie algebra 9=so*(14) is written as a vector space direct sum. 

(3.1) 
where X is the Lie algebra of Hand F the complementary vector subspace of 9. Basis 
operators for the anti-de Sitter algebra s0 (2 ,3 ) ,  for the su(3) ,  su(2) and u ( l )  algebras, 
aredenotedas{KAB=-KBA}(A,B=0,1,2,3,4),{T~}(k=I ,..., 8 ) , { t S } ( s = l , 2 , 3 ) ,  
and Y, respectively. They are defined by 

9 = X0.Y = so(2 ,3)  @SU(3)@SU( 2)@u( I ) @.T 

KO1 = 4 ( p t , - p 2 4 )  K 0 2 = - f ( q 1 3 + 9 2 4 )  K 0 3 = - i ( p 2 3  +pl4) 
KI2 = -;(mII -11122 + -ina) Ktz ';(I12 + 134) K23 = - ;(1?712+f17,4) 

(3.2) 
K40 = + &nl I + inz2 + i q 3  + 
&3=-f (q23+414)  

K41 =f(q13-424) K 4 2 = + f ( P I 3  +p24)  

TI = fins6 T 2  = 5/56 T 3  =a( i7755-  T4= fmS7 

(3.3) 
TS 4/57 T 6  = $1767 T7 = f/67 

(3.4) f l =  -&nl,+in24) 12 = -;(I13 + 124) f 3 = & z l l  +m22-m33-ina) 

Y= - f ( m 5 5 + r 1 7 b h + r 1 7 7 7 ) .  (3.5) 
Basis operators for the complement .T of Jv in 9, are defined by {SAS}, IS,, ,g '}  (p = 
1 , 2 , 3 )  and {S.~u,~u"u=:Sp~u(yo)~} ( a , p = l , 2 , 3 , 4 ;  o = l , 2 ) ,  where 

Ts = - (1115s + ww - 211777) 
(4;) 
I 
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The s"'" are obtained from the corresponding So,,- after changing the sign before the 
'i' in the second term of these basis operators. 

In a finite-dimensional representation, their hermiticity properties are 

KLB= KAB T; = T~ 4 = t., Y'= Y (3.9) 
s:, = s: S;=P gv0 = S " P "  

and S"" is the 'Dirac adioint' of Sn,,n. The anti-de Sitter indices A. B are raised ushe -,.- - 
q"*=diag(-l, I ,  I ,  I,-]). 

We remark that so*(8)>~~(2 ,3)@su(2)  is generated by { K A B ,  t s ,  SA.?} and 
s ~ * ( ~ ) ~ s u ( ~ ) $ u ( I )  by {Tk, Y,s,,s"}. 

4. Commutation relations 

After defining basis operators for so*( 14), which reflect the subalgebra structure of 
interest here, we define the commutation relations between these basis elements. They 
are obtained straightforwardly by using the fundamental commutation relations given 
by (2.3) and the definition of the basis operators in (3.2)-(3.8). 

In the sequel, A. B, C, D=O, 1,2, 3 ,4  are anti-de Sitter indices. The indices 
a, p, y, 6= I ,  2 , 3 , 4  label entries of the matrices uAR and y '. The (uA8} provide a set 
of basis operators of the fundamental spinor irrep of so(2, 3) .  Explicit definition of the 
uAB and gamma matrices y" are given in the appendix. Indices i, j ,  k, I =  I ,  . . . , 8 and 
p ,  q. r ,  s= 1,2,3 enumerate basis operators ofsu(3) and su(2), respectively. The indices 
IC, I ,  p, v ,  5 =  1, 2, 3 and n, p ,  (r, T = I ,  2 label the entries of the Gell-Mann matrices 
Ak and Pauli matrices o;, respectively. 

The non-zero commutators are listed below, grouped according to their action on 
subspaces YP and F: 

[.F,.F]CX 

[ K A B ,  KCD]  =i(tlscKao f VADKBC- ~ A C K R D -  ~ B O K A C )  (4. I ) 

(4.2) 

(4.3) 

(4.4) 
(4 .54  

( 4 . 6 ~ )  

(4.6b) 

(4.8) 

(4.9a) 
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(4.96) 

(4 .10~)  

(4.10h) 

(4. I 1 U )  

(4. I 16) 

[.F, 9-1 c$ 

[S,, 37 =(L&T,+ s;; Y (4.12) 

 SA^, S s s l = - i S , K ~ a + i ~ ~ 8 ~ ~ R ~ ,  (4.13) 

[ S A S ,  Se,ul = -6(YSYA)!(%):SP,“ (4 .14~)  

[SA,, S a M q  =iS~’i(YsYA);(us): (4.146) 

Is,, s,,,.~] =-i&nvyculSByrcbp (4.1 Sa) 

[S”,  s”““] = - i & ” v Y  E or Sp,,C”O (4.1%) 

[So,,, S,,.,] = +,,,.+$‘cup (4.16~) 

[Swu, SP-]= isn’ysurSycoP (4.166) 

[s,,,, S P 7  = s~s~(a,) ;T~+4s~s~~(a‘)~l , - fs~s~s~~ 
+ t s ; s ~ ( ~ ” E ) ~ K A 8 - f S ; ; ( Y S Y - ( ) ~ ( 6 ) ~ S A I .  (4.17) 

The commutation relation (4.1) defines the anti-de Sitter algebra. In (4.2), thef; 
are the structure constants of su(3) (for a list see, for example, [ 151). The commutation 
relations (4.3), where &= 1, are those for the 4 2 )  algebra. In a finite-dimensional 
representation, the commutation relations (4.50) and (4.56) are each other Hermitian 
conjugate. The same is true for the relations (4.6), (4.7), (4.9)-(4.11) and (4.14)-(4.16). 
Since H i s  connected, [ X ,  F] c.F means that the homogeneous space G / H  is reductive 
[161. 

5. The so*(14) gauge field 

In the theory of fibre bundles, a gauge field is introduced as a connection one-form on 
a principal fibre bundle [ 171. Therefore, let P ( M ,  G)  be a G=S0*(14) principal fibre 
bundle, Q ( M ,  H)aH=S0(2,3)@SU(3)@SU(2)@L‘(l)sub-bundleofPand y : Q - + P  
the identity injection of Q into its extension P. 

I f  p is a connection one-form on P, then the restriction p of p to Q, i.e. p = y*p, 
splits according to the Lie algebra stmcture into a XL-valued part w and a F-valued 
part $: 

p=o+$. (5.1) 
From section 4 we have that [ y * X L ,  3]c.F, which implies that w i s  a connection one- 
form on Q and $ tensorial one-form of type (Ad H, T) on Q [le], where Ad denotes 
the adjoint representation of the symmetry group. 
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We can expand the Lie algebra-valued connection w and the tensorial one-form 
d as 

(5.2) 

(5 .3 )  

with XAB= -iKA_., ,%= -iTk, - d,= -i&, ?/= -iY, ,%, = -isl,, pi’= -i$”,%= -Sa,, 
.%pu=-iSo,,u. y””“=-iS””“, Here, .KAn. .%, t,? and ?/ form a basis for the anti-de 
Sitter, su(3), su(2) and u(1) algebra, respectively. If  the S0*(14) symmetry is broken 
by the Higgs mechanism, the tensorial fields in the .F-valued part of the connection 
acquire a mass, while the components of w are the gauge fields that remain massless 

The transformation properties of the 91 gauge fields under S0(2,3)@ 

I A R  w = zw X A B  + wk% f w”t,+ w yzu 

$= $““.Yr.+ $”..v; + &9” + @,’”“.9&+ qapmP”“  

[121. 

S U ( 3 ) @ S U ( 2 ) @ U ( I )  are 

(10.I.1.0)s(5.1.3.0)0(l.1.3.0)0(1.8.1.0)0(1.1.1.0) 
os COk w y  

91 = 
wAB 

0 (1.3.1.:)Q(l.?.1.-:)@(4.3.2.-$@(4.?.2.;) - 
d f  4” Pa @w.s 

(5.4) 

where the entries (n ,  .nz.n3.p) represent the representations under the S 0 ( 2 , 3 ) ,  SU(3)  
and SU(2)  subgroups and the value of the U( 1) generator, respectively.’The normaliza- 
tion of the U(1) generator Y has been chosen as in [ 2 ] .  We identify a””, transforming 
as the IO-tensor adjoint representation of S 0 ( 2 , 3 ) ,  as the components of the anti-de 
Sitter connection one-form. The 12 gauge bosons wk, w* and m y  are associated with 
SU(3)@SU(2)@U(I ) .  In addition, there are 69 massive gauge fields. The @,”“ and 
&pb,  are four-spinors transforming as a triplet under SU(3)  (p-index) and as a doublet 
under SU(2)  (0-index). They link quarks and leptons that lie within the same multiplet 
of SO*( 14). Being fermions, baryon and lepton number-violating interactions mediated 
by these ‘lepto-quarks’ are enormously suppressed. The 4’‘ and 6” are colour triplet 
lepto-quark bosons. Finally, we have an anti-de Sitter five-vector $”’, which transforms 
as a triplet under SU(2).  If we identify Y with the weak hypercharge operator, then we 
find, from the Gell-Mann-Nishijima relation Q = t 3 + i Y  for the electric charge gener- 
ator of the symmetry after electroweak symmetry breaking, that the lepto-quark 
vector fermions @,”“ have electric charge and - 2. The &,,, carry the opposite charge. 
The 6” and &, carry charges of 5 and - 3 .  From the isotriplet $As we have the charge 
polarization combination $”* = fi($A’ F @42), @lo= qbA3. The fields $”* then have 
charge + I  and - I ,  whereas the @“’ are neutral fields. These charge assignments can 
be verified using [Q, y ] = q y  for fields w and by using the commutation relations of 
section 4. 

calculated from f i  on P, can be 
written as [ 131 

The reduction A=y*K to Q of the curvature 

A=dp t i [ p ,  p] =Q+ CP t C (5 .5)  
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where 

Cl=dw+;[w,m] (5 .6)  

Q=d$+[w,$I (5.7) 

c=t[$, $1. (5 .8)  

Here, [ , ] denotes the exterior product of Lie algebra-valued forms. 
Substituting theexpressions (5.2) and (5.3) for w and $ into (5.6)-(5.8),  and using 

the commutation relations given in section 4, yields (the wedge product is assumed 
between forms) 

(5.9) 

FAB= doAB+ o$wCB (5.10) 

I AB Q=iF &B+ F*%+F'C,+ l?U 

with 

(5.1 I )  

F'= dw' + f&&w coq (5.12) 

F= dw (5.13) 

Q = QAJYA, + Qr$ + 5pgp + Q " p a ~ y b p u  + 5 c , , c ~ p o  (5.14) 

Fk=dok+ifg" l k l l  

with 

(5.15) 

( D r = d $ " - t i w i ~ ( l , ) : - ( 4 ) ; w Y d P  (5.16) 

5, = d$,, + fiw'$,.(L,); + (:)io '6,, (5.17) 

@"#U= dfl#u- $wAR$fl#u(~AB)Z - fio'$"'"(&)~ -$wsflH'(o,)r+ (;)io (5.18) 

Q,,,= d&,, + f i w " B ~ ~ p ~ ( o l ~ ) ~ + ~ i o ' ~ ~ ~ , ( l i ) ~ + ~ i o " ~ . , ~ ( a . ) ~ -  (5.19) 

and, finally 

@As = d$ A,? + A =$ Cr +ig,wq@A' 

- 

~=-f ($~$"+i f lpu&ru(u  A B P  L) x AB _. I($ c1p.r- $uv.,+$"6v)(&)L% 
I clpu- +t(E',AA'G-iV'"~~p~(03:)c~-i(#r~,--I0 $o,,s)%' 

+ti@"'&pa(YsYA)i (f~:% 
+ 6 d ' ~ ~ * ' C " ~ ~ ~ i . , u ~ ~ " , R - 4 E y b p " l E u i C c r p $  "p" $ p n - 2  s 

--t(d'" &ruc~a$2&"* - il# 4 (Y5Y");(os):)%po 
1. As prr 

(5.20) 

In (5.9), FAB is the anti-de Sitter curvature two-form calculated from the anti-de Sitter 
connection one-form w A B .  Fk, F' and F a r e  the curvature two-forms calculated from 
the su(3), su(2.) and u ( l )  connection one-forms wk, 0' and m y ,  respectively. In (5.14), 
Q"', W ,  5 , WpU and 5,,, are the exterior H-covariant derivatives of 6": @', B,,, 
Vr'" and respectively. 

1 pt,r 1. As 
- f ( E A v p & z u c i 3 @ $  6 +$$ 6 ~ p ~ , , ( r s u A ) C ( u , ) : ) ~ ' " ~ ~ .  
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6. Gauge field Lagrangian 

Within the fibre bundle formulation of a Yang-Mills gauge theory, the gauge field 
Lagrangian on P ( M ,  C) is defined as a Yang-Mills Weil form [I31 

&(A, *A) (6.1) 
where is the curvature two-form calculated from the connection one-form p on P, 
* is the Hodge duality transformation, and b a n  Ad(G)-invariant Weil polynomial of 
degree two on the Lie algebra B. In the case ??=so*( 14) considered here, the restriction 
A of A to Q is a tensorial two-form on Q (see section 5) .  Then the restriction to Q of 
the Weil form itself, i.e. L2(A, *A) = y * t 2 ( &  *A), projects to a unique four-form Y on 
M such that [ 131 

L2(A, *A) = n*Y (6.2) 

where K is the projection from Q on the base M .  
The invariance of (6.1) under general gauge transformations (the vertical automor- 

phisms of P) follows from the Ad(G) invariance of L and the fact that A is a tensorial 
two-form. Notice that in (6.2) the four-form 9 (Lagrangian on M )  is defined without 
using pull-backs through natural sections of P defined by a choice of a local trivialization 
(gauge fixing) of the principal fibre bundle. 

An Ad(SO*(14))-invariant Weil polynomial on so*(14) of degree two is propor- 
tional to 

(6.3) t2(x,  Y) = -f(tr(X) tr( Y) - tr(XY)) 

where X, Y€so*(l4) .  Since tr(nz,,) =tr(l,J = tr(p,3 = tr(q,,,) =0, and 

tr(m,u.nz,,,.) =46[:,,, 

tr(L. LV)=46K,~ 

tr(p,,.p.,,J = -469,,,] (6.4) 

tr(q,, . q d  = - 46/h] 

tr(xtv. Y.J = 0 ifx#y 

where x , ~ ,  yo,. denotes any of the inru, I,",  p,", 4,", it is straightforward to obtain that 

L 2 ( x A B 1  x C D ) =  C l ( ? A C ? B D -  V A D V B C )  

L2(97, q = c2&J 

&(&, t,) = Cd, 

L 2 ( 9 ,  9 ) = c4 

U%, 93 = css; 
& ( Y A r ,  Y l s ) = c 6 ) 7 A B 8 r s  

L2(%%#,, P".)= c,6es;s; 

with others zero. We introduced constants C , ,  C2,. . . , C, since the Weil polynomials 
are defined only upon an arbitrary constant. 
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Using the multilinearity of L2, we obtain 

LI(A ,  *A)=Lz(Q,  *R)+L2(@, *@)+L2(C, *Z)+2L2(Qq *C)+2L2(QD, 'E). (6.6) 
We then substitute the explicit expressions for Q, CD, as given in (5.9), (5.14) and 
(5.20) into the Lagrangian (6.6), and use (6.5). For the first two terms in (6.6) we 
obtain 

(6.7) 

(6.8) 
The gauge field Lagrangian for the massless gauge fields CO", CO', W I  and w ' is given 
by (6.7). For the massive fields, the kinetic terms are given by (6.8). The last three 
terms in (6.6) contain the interaction terms between the massless and massive fields 
and self-interaction terms of the massive fields. As for the first two terms in (6.6), it is 
straightforward to obtain their explicit expressions. 

LI(z2 ,  * C ~ ) = $ I F " * ~ ; ~ B +  C2Fk*FA+ C,F"*F,+ CdF*F 

L,(@, *@) =2Cs@p*&# + C6@""*@",+2C,@.P~*mal,~ 

7. Discussion 

By considering a field theory based on so*( 14). we are led to a unification of gravity 
with the other fundamental interactions according to a GUT scheme. We have started to 
build such a field theory by giving a field theoretical interpretation of the 91-dimensional 
adjoint irrep of so*(14) with respect to the reduction so*(14)=so(2, 3)$su(3)Q 
su(2)@u(l). We thus obtained the pure gauge field sector. In [Z], branching rules of 
the foregoing type are also given for the two fundamental spinor irreps, each of dimen- 
sion 64, and for the defining 14-vector irrep ofso*( 14). Including matter fields (fermions, 
Higgs fields) in the theory consists of giving a field theoretical interpretation of these 
branchings. Although we concentrate here on the gauge field sector. we wish to note 
that fermions of the first generation can be placed in a pair of 64-dimensional complex 
spinor irreps (64)- and (64)+ of so*(14). The su(2) doublet of four-spinors which is 
an $ 4 3 )  triplet in the (64)- can be associated with a left-handed (U, d) quark doublet, 
while the 4 2 )  doublet of four spinors which is an su(3) singlet in the same irrep can 
be associated with a left-handed lepton doublet (v , ,  e-). Their right-handed antiparti- 
cles can be placed in  the (64)+. The bosonic part of these supermultiplets contain a 
coloured as well as a non-coloured so(2,3) vector and scalar. 

Gravitational interaction is created when the anti-de Sitter symmetry is broken 
down to a Lorentz subsymmetry. The ant ide Sitter connection p'=&?"'XAB, then has 
to be interpreted as a Cartan connection on the anti-de Sitter frame bundle. The anti- 
de Sitter algebra so(2,3) splits into a Lorentz subalgebra so( I ,  3) and a complementary 
vector space RI.' isomorphic with Minkowski space. The IO generators XAB of the anti- 
de Sitter group split into six generators Job=: jYvb of the Lorentz subgroup and four 
anti-de Sitter boosts P.=: (l/l)%o, with I the de Sitter length. The restriction of p' to 
the Lorentz sub-bundle, here the bundle U ( M )  of orthonormal frames over M, splits 
according to the Lie algebra structure into the sum of a Lorentz connection u'=~rX"'J,,~ 
and an R'~3-valued part $'= 1mkPu= Bopv, identified with the canonical or soldering 
form B on U(M). The restriction to O(M) of the anti-de Sitter curvature two-form, 
that is, A=Dp'p '=fF"'XA8,  has components 

(7.1) 

~ 4 = = [ - 1 ~ 0  (7.2) 

Foh,yh  + 1 - 2 . 9 0 ~ h  
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where is the curvature two-form of the Lorentz frame bundle O ( M )  calculated 
from the Lorentz connection o"", and 0" the torsion two-form of U ( M ) .  The kinetic 
term fCIFAB*FAB for the anti-de Sitter gauge field in (6 .7)  then reduces to a gravitational 
Lagrangian which, besides curvature-squared and torsion-squared terms, also contains 
the Einstein action with a cosmological term. In fact. 

$,FAB*F~B= Cl($slah*A2,b - + 8 1 - 2 ~ ~ ~ l . d A 2 R h 8 t e d f ~ l - 4 ~ . h c d % n 8 h % c e d ) .  (7 .3)  

Ifwe put CI =( 1/16~)(1/g~),g,=1~/1where I ,  is the Planck length, then the Lagrangian 
(6.7) projected to the base manifold defines an Einstein-Cartan-Yang-Mills theory. 
The constants C2, C, and Cn can be identified as the gauge couplings from strong and 
electroweak interaction, i.e. Cz=-I / (2g : ) ,  Cs=-1/(2g2) ,  C4=- l / (2g '2 ) .  The other 
components of the total Lagrangian (6.6) give a further matter Lagrangian for the 
gravitation theory. Gravitational Lagrangians o f  type (7.3), where the Einstein Lagrang- 
ian is combined with a Lagrangian corresponding to that of a Yang-Mills theory of 
the Lorentz group, have been considered before [19, 201. Field equations are obtained 
from (7 .3)  by independent variations with respect to Wand mnh. If (7 .3)  is supplemented 
with the matter Laograngian YM, they have the form 

(7 .4)  

(7.5) 

$l-2&akdA2ab8' i l -2D*0d+  81-4&,bcd8"8h8C = S~gi?Td(~)  - Z d  lTcn' + l-'TJB' 

I-2&ob,d@e8d- 2[-2*@in8h] + DmQ,h= 8 ~ g ; S ~ h  

where the energy momentum and spin angular momentum three-forms of the matter 
fields are defined as 

6 0 2 ~  = SBaTJM' (7.6a) 

G r v 2 M  = ;Go"bSh, . (7.6b) 

Tjn' and TJB' are the Yang-Mills energy-momentum three-forms associated with the 
curvature kinetic energy -$2"b*sl.b and the torsion kinetic energy - W O , ,  respec- 
tively [19,20] .  We note that there is no third (redundant) field equation which appears 
in metric-affine gauge theories [21] by considering the metric tensor of the base manifold 
M as a third independent geometric potential. In the present formulation, with the 
gravitational Lagrangian defined on the Lorentz frame bundle, everything is referred 
to orthonormal frames, and there is no possibility for considering changes of the metric 
tensor. From the first Bianchi identity D0"=SlabO~ and the field equations, one obtains 
the Noether identity for the Lorentz symmetry 

*DS,,b=*(8bTJM'- O,Td'') (7.7) 
where we also used that (*D*)h.h=O [I71 and the fact that the currents Td"' and 
Tj@' are symmetric. For zero torsion (7.5) reduces to the Yang-Mills field equation 
for an SO( 1,3) gauge theory with 8+& as a dimensionless coupling. This equation then 
implies that the left-hand side of (7.7) vanishes such that BreT,!Y'=O, which means that 
for zero torsion the energy-momentum tensor TJY' of the matter fields is symmetric 
and can be identified as the Belinfante-Rosenfeld energy momentum tensor [22] .  In a 
torsionless vacuum, the field equations have anti-de Sitter space [23] with constant 
negative curvature -1/12 as a solution since Td"' vanishes for Einstein spaces [24] .  For 
this solution, the cosmological term vanishes if the de Sitter length I + CO, corresponding 
to an antide Sitter + Poincari contraction of the spacetime symmetry group. In this 
limit, the theory in fact reduces to the Stephenson-Yang theory, studied extensively by 
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Fairchild [24]. With I - +  /,and the torsion constrained to zero, (7.4) reduces lo Einstein's 
field equation as long as the curvature of spacetime does not approach I//;. The vacuum 
then has an enormous (negative) energy density. However, quantum corrections will 
generate such a cosmological term even if it was initially absent [25]. Since /,=constant, 
the limits considered are determined by the value of d. In a quantum field theory, the 
dimensionless coupling& of the anti-de Sitter gauge theory is not a constant but evolves, 
just like the other couplings in the theory, according to the B-functions in the renormal- 
ization group equation. Solving these equations is necessary io determine the effective 
gravitational theory. It will also make a contribution towards solving the problem of 
the cosmological term in the contemporary universe. 
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Appendix 

In this appendix we list our choice of conventions for the Pauli, Cell-Mann and Dirac 
matrices, and introduce further notation. 

The Pauli matrices us= U:, s= I ,  2, 3, provide a set of basis operators of the funda- 
mental irrep of xu(?.): 

t The Gell-Mann matrices &=A+, k= I ,  2,. . . , 8, provide a set of basis operators 
of the fundamental irrep of $143): 

0 1 0  0 -i 0 

0 0 -i 

0 0 -2 

:] (A2) 
0 1 0  

The4x4matricescAB={uah.uln},u AB= q AC 7 BD ucD, qAB=diag( - l , l , I , l , - l ) ,  
a,b=O,  1,2,3,definedas 

6 4 3 )  u4a=irn 

provide a set of basis operators of the fundamental spinor irrep of so(2, 3), and 
0:,9=uAB. The Dirac matrices ya= qabyh generating the real Clifford algebra C( I ,  3), 

I ab =:-I' I l [ r n >  rb] 
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are represented by 

We also introduce y4=i14 and the five-vector operator { y') = { yo, y ' ,  y, y3 ,  y'}) ,  Y A =  

qray . Finally, R 

and 

is the charge conjugation matrix. 
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